
www.manaraa.com

I

www.manaraa.com

II

Computer Engineering Department
Faculty Of Engineering
Deanery of Higher Studies
Islamic University – Gaza
Palestine

New Methods of Query over Encrypted
Data in Database

Ayman M. Al Derawi

A Thesis Submitted in Partial
Fulfillment of the Requirements for
the Degree of Master in Computer

Engineering

1433 H
2012

Supervisor:

Dr. Mohammed Al Hanjouri

www.manaraa.com

III

www.manaraa.com

IV

New Methods of Query over Encrypted Data in Database
Ayman M. Al Derawi

Abstract

High secure data in databases is protected by encryption. When the data is encrypted,

query performance decreases. In this work we propose three new mechanisms to query the

encrypted data beside make a tradeoff between the performance and the security. We

introduce three different methods, the first two works on encrypted data when the condition

of the ‘where’ statement is ‘=’ (searching for a specific whole word), the third one used when

the condition of the ‘where’ statement is ‘like’ (searching for a part of the word). Our three

methods based on replacing the select conditions on the encrypted data with another

condition which is faster. In the first method we introduce a one-to-one mapping functions

that is used as index for the plain data which will be encrypted; this function is also cannot be

reversed without the key so the attackers cannot guess the plain text from the index. For

example we will use AES as encryption/decryption function and SHA-1 as hashing function.

In the second way we enhance the first way by putting the index on the memory, the index is

implemented as a data structure Hash Map, this makes the response time faster but it needs a

huge memory size, so this method cannot be used with the huge database size. In the third

method we focus on the select statement contains a condition on a part of the cipher text, this

makes it harder to implement the index without open a mapping between the plain text and

the index. In the third way we work on two steps: creating the index and hiding the index. We

notice that when the number of characters in the fuzzy query increase the response time

enhance. We also notice that the response time for the fuzzy query contains the characters in

the end of the word is better than the response time for the same query contains the characters

in the start of the word and the response time for the fuzzy query contains the characters in

the start of the word is better than the same query contains the character in the middle of the

word. Our mechanisms work over many data-types. We implement our work as a layer above

the DBMS; this makes our method compatible with any DBMS. The layer has common

components for the three methods and specific components for each method. In the

experiments we change the number of records in the database from 100 to 10,000 and

measure the response time in mille second for the select query which have a condition on

encrypted columns for each of the three proposed methods. The results of the experiments

validate our approach. The experiments implement using a structure from a universal

www.manaraa.com

V

benchmark TPC-H. The advantage of our work is that we enhance the response time of the

query on the encrypted database beside maintain the security of the data. Our work can be

used on equal and fuzzy conditions and can be implemented over any kind of DBMS.

Keywords- Encryption; Hashing; Querying over Encrypted Data; Numeric Index; Fuzzy Query.

www.manaraa.com

VI

 الاستعلام عن البيانات المشفرة في قواعد البيانات

الديراويمحمد أيمن

 ملخص

 البيانات، تشفير يتم عندما. بتشفير هذه البيانات بياناتال قواعد في المهمة ناتالبيا حماية تمي

 المشفرة البيانات عن للاستعلام جديدة آليات ثلاث نقترح هذا البحث في. هاتقل سرعة الاستعلام عن

 عندما رةالبيانات المشف على نيعملا والثانية الأولى الطريقة. والأمان الأداء بين التوازن إجراء بجانب

 يكون عندما تستخدم ةالثالثالطريقة ،)اي البحث عن كلمة بعينها('=' هو في البحث الشرط يكون

تقوم فكرة الطرق الثلاث على استبدال شرط .)البحث عن جزء من كلمة('like' هو في البحث الشرط

قمنا ببناء فهرس في الطريقة الاولى .البحث عن البيانات المشفرة بشرط آخر اسرع في الاستعلام

مع وجود شرط ان هذه الدوال لا (one-to-one)للبيانات المراد تشفيرها باستخدام دوال لها خاصية

يمكن عكسها بدون وجود المفتاح الخاص بها لذا فإنه لا يمكن معرفة البيانات الغير مشفرة باستخدام

-SHA(فك التشفير و \دالة التشفيرك) AES(مثال على هذه الدوال والتي قمنا باستخدامها . الفهرس

قمنا بتطبيق ، في الطريقة الثانية قمنا بتطوير الطريقة الاولى وذلك بوضع الفهرس في الذاكرة.)1

هذه الطريقة قامت بتحسين وقت الاستجابة ،)Hash Map(الفهرس على شكل هيكلية للبيانات

يقة لا يمكن استخدامها مع قواعد البيانات ولكنها تحتاج الى مساحة كبيرة من الذاكرة لذا فهذه الطر

في الطريقة الثالثة قمنا بالتركيز على الاستعلام المحتوي على شرط على جزء من .كبيرة الحجم

هذا يجعل من الصعب تصميم الفهرس بدون اتاحة المجال للربط بين البيانات الغير ، البيانات المشفرة

، تصميم الفهرس و اخفاء الفهرس: بالعمل على مرحلتين في الطريقة الثالة قمنا. مشفرة والفهرس

قمنا ايضا بملاحظة ان . قمنا بملاحظة انه عندما يزيد عدد الاحرف في الاستعلام يتحسن وقت الاستجابة

وقت الاستجابة للاستعلام عن الاحرف الموجودة في نهاية الكلمة افضل من وقت الاستعلام عن الاحرف

لمة ووقت الاستعلام للاحرف الموجودة في بداية الكلمة افضل من وقت الاستعلام الموجودة في بداية الك

قمنا بتطبيق . الطرق الثلاث تعمل على العديد من انواع البيانات.للاحرف الموجودة في وسط الكلمة

نظام لادارة قواعد أي مع متوافق أسلوبنا يجعل وهذا ،نظام ادارة قواعد البيانات فوق كطبقة العمل

. تحتوي هذه الطبقة على مكونات مشتركة للطرق الثلاث ومكونات اخرى خاصة بكل طريقة. البيانات

مع قياس وقت 10,000حتى 100اثناء التجارب قمنا بتغيير عدد الصفوف في قاعدة البيانات من

. مقترحةالاستجابة بالمللي ثانية للاستعلام المحتوي على شرط على العمود المشفر للطرق الثلاثة ال

. (TPC-H)تم تنفيذ التجارب باستخدام معايير عالمية من . اثبتت النتائج صحة طرقنا المستخدمة

ستعلام عن البيانات المشفرة في قواعد قمنا بتحسين وقت الاستجابة للا انناقمنا به العمل الذيميزات

www.manaraa.com

VII

خدم للاستعلام عن كل الشرط او العمل الذي قمنا به يست. البيانات مع المحافظة على سرية هذه البيانات

 .جزء منه ويمكن تطبيقه مع اي نظام لادارة قواعد البيانات

www.manaraa.com

VIII

 الاهداء

 الى امي وابي الغاليين

 الى زوجتي الصبورة الغالية

 الى حلا المنورة حياتي

 لولا دعمكم لما كان هذا العمل، شكرا لكم جميعا

www.manaraa.com

IX

ACKNOWLEDGMENT

I deeply thank my supervisor for all of his efforts to support me during my work, his
immense support not only in advice, guidance, and inspiration, but also, he was one of the
main reasons that support me to complete this thesis.

All my respect to Dr. Mohammed Al Hanjouri. The person who teaches me how to
make an original papers and how to publish them, the person who makes me loves this study.

www.manaraa.com

X

Table of Contents

English Abstract .. IV

Arabic Abstract .. VI

Gifting .. VIII

Acknowledgment .. IX

List of Abbreviations ……….………………………………………………….. XII

List of Figures .. XIII

List of Tables .. XV

Chapter 1 Introduction .. 1

1.1 Thesis Contribution .. 1

1.2 Organization of the Research ... 2

Chapter 2 Related Work …………………………………………... 3

2.1 Classification …………………………………………....... 3

2.2 Related Work …………………………………………... 3

Chapter 3 Background .. 6

3.1 Advanced Encryption Standard (AES) Algorithm 6 4
3.2 High-level description of the algorithm 7

3.3 SubBytes Step .. 7

3.4 ShiftRows Step .. 8

3.5 Mix Columns Step .. 8

3.6 AddRound Key Step .. 9

3.7 Hashing: SHA-1 Algorithm ... 10 8

3.8 Hash Map .. 11

Chapter 4 Methodology .. 12

4.1 Layering Technique .. 12

4.2 Architecture of the first Method .. 13

4.3 Architecture of the second Method .. 16

4.4 Architecture of the third Method .. 17

 4.4.1 Step1: Creating the Index .. 18

 4.4.2 Step2: Hiding the Index .. 20

4.4.3 Running fuzzy Query .. 23

www.manaraa.com

XI

Chapter 5 Experiments and Analysis of Performance 27

5.1 Experiments environment .. 27

5.2 Results for the first Method .. 31

5.3 Results for the second Method .. 34

5.4 Results for the third Method .. 36

 5.4.1 First Group: Number of characters in the fuzzy query = 1 . 38

 5.4.2 Second Group: Number of characters in the fuzzy query = 2 . 44

 5.4.3 Third Group: Number of characters in the fuzzy query = 3 . 48

 5.4.4 Fourth Group: Number of characters in the fuzzy query = 4 . 52

 5.4.5 Comparison between the four groups…………………... . 56

Chapter 6 Conclusion and Future Work ... 60

6.1 Summary and Concluding Remarks ... 60

6.2 Recommendations and Future Work ... 61

References ... 62

www.manaraa.com

XII

List of Abbreviations

AES: Advanced Encryption Standard
SHA: Secure Hash Algorithm
DBMS: Database Management System
TPC: Transaction Processing Performance Council
SQL: Structured Query Language
XML: Extensible Markup Language
DES: Data Encryption Standard
GF: ieldF Gaussian
NSA: National Security Agency
MIT: Massachusetts Institute of Technology
MD: Message Digest

www.manaraa.com

XIII

List of Figures

Figure 3.1: SubByte Step in AES .. 7
Figure 3.2: ShiftRows Step in AES .. 8
Figure 3.3: MixColumns Step in AES .. 8
Figure 3.4: AddRoundKey Step in AES .. 9
Figure 3.5: 1 compression function-One iteration within the SHA 10
Figure 3.6: A small phone book as a hash table .. 11
Figure 4.1: The Layer over the DBMS ... 12
Figure 4.2: Index over hashed data ... 13
Figure 4.3: Index over encrypted data ... 13
Figure 4.4: Architecture of the layer for the first method .. 14
Figure 4.5: Architecture of the layer for the second method .. 17
Figure 4.6: Architecture of the layer of the third method .. 26
Figure 5.1: The TPC-H Schema .. 28
Figure 5.2: Comparing between the first method and the traditional method 32
Figure 5.3: Results of executing the same query using HASH_METHOD and ENC_METHOD 33
Figure 5.4: Comparing between the second method and the traditional method 34
Figure 5.5: Results of executing the same query using ENH_HASH_METHOD 35
Figure 5.6: Results of executing the same query using the traditional method and

FUZZY_METHOD_START for number of characters =1 38
Figure 5.7: Results of executing the same query using FUZZY_METHOD_START for

number of characters =1 .. 39
Figure 5.8: Results of executing the same query using the traditional method and

FUZZY_METHOD_MIDDLE for number of characters =1............................... 40
Figure 5.9: Comparing between FUZZY_METHOD-START and FUZZY_METHOD-

MIDDLE ... 41
Figure 5.10: Results of executing the same query using the traditional method and

FUZZY_METHOD_END for number of characters =1 42
Figure 5.11: Comparing between FUZZY_METHOD_START,

FUZZY_METHOD_MIDDLE and FUZZY_METHOD_END 43
Figure 5.12: Results of executing the same query using the traditional method and

FUZZY_METHOD_START for number of characters =2 44
Figure 5.13: Results of executing the same query using the traditional method and

FUZZY_METHOD_MIDDLE for number of characters =2 45

www.manaraa.com

XIV

Figure 5.14: Results of executing the same query using the traditional method and

FUZZY_METHOD_END for number of characters =2 46
Figure 5.15: Results of executing the same query using the FUZZY_METHOD_START,

FUZZY_METHOD_MIDDLE and FUZZY_METHOD_END for number of

characters =2 ... 47
Figure 5.16: Results of executing the same query using the traditional method and

FUZZY_METHOD_START for number of characters =3 48
Figure 5.17: Results of executing the same query using the traditional method and

FUZZY_METHOD_MIDDLE for number of characters =3............................... 49
Figure 5.18: Results of executing the same query using the traditional method and

FUZZY_METHOD_END for number of characters =3...................................... 50
Figure 5.19: Results of executing the same query using FUZZY_METHOD_START,

FUZZY_METHOD_MIDDLE AND FUZZY_METHOD_END for number of

characters =3... 51
Figure 5.20: Results of executing the same query using traditional method and

FUZZY_METHOD_START for number of characters =4.......................... 52
Figure 5.21: Results of executing the same query using traditional method and

FUZZY_METHOD_MIDDLE for number of characters =4........................ 53
Figure 5.22: Results of executing the same query using traditional method and

FUZZY_METHOD_END for number of characters =4............................... 54
Figure 5.23: Results of executing the same query using FUZZY_METHOD_START ,

FUZZY_METHOD_MIDDLE and FUZZY_METHOD_END for number of

characters =4... 55
Figure 5.24: Results of executing the same query using FUZZY_METHOD_START

for number of characters =1,2,3,4... 56
Figure 5.25: Results of executing the same query using FUZZY_METHOD_MIDDLE

 for number of characters =1,2,3,4... 57
Figure 5.26: Results of executing the same query using FUZZY_METHOD_END for

number of characters =1,2,3,4.. 58

www.manaraa.com

XV

List of Tables

Table 4.1: Meta data example .. 14

Table 4.2: TABLES_HASHES example ... 19

Table 4.3: Creating the index .. 20

Table 4.4: TABLES_FUNCTIONS example ... 20

Table 4.5: Hiding the index ... 21

Table 4.6: Result of the query for ROWS_IDs = 1,2 24

Table 4.7: Result of the query ROWS_IDs = 1,2 , 3 25

Table 5.1: QUERY TIME COST VS. NUMBER OF RECORD FOR THE FIRST

METHOD... 31

Table 5.2: QUERY TIME COST VS. NUMBER OF RECORD FOR THE SECOND

METHOD... 34

Table 5.3: QUERY TIME COST VS. NUMBER OF RECORD FOR THE FIRST CASE.
LOCATION = START... 38

Table 5.4: QUERY TIME COST VS. NUMBER OF RECORD FOR THE SECOND

CASE.. 40

Table 5.5: Query time cost vs. Number of record for the third case 42

Table 5.6: Time cost vs. Number of record. LOCATION=START; LENGTH=2 44

Table 5.7: Query time cost vs. Number of record LOCATION = MIDDLE;

LENGHT =2... 45

Table 5.8: Query time cost vs. Number of record LOCATION = END;

LENGHT = 2.. 46

Table 5.9: Query time cost vs. Number of record LOCATION = START,

MIDDLE, END; LENGHT = 2.. 47

Table 5.10: Query time cost vs. Number of record LOCATION = START;

LENGHT =3.. 48

Table 5.11: Query time cost vs. Number of record LOCATION = MIDDLE;

LENGHT = 3.. 49

Table 5.12: Query time cost vs. Number of record LOCATION = END;

LENGHT = 3.. 50

Table 5.13: Query time cost vs. Number of record LOCATION = START,

MIDDLE, END; LENGHT = 3... 51

www.manaraa.com

XVI

Table 5.14: Query time cost vs. Number of record LOCATION = START;

LENGHT = 4..

52

Table 5.15: Query time cost vs. Number of record LOCATION = MIDDLE;

LENGHT = 4.. 53

Table 5.16: Query time cost vs. Number of record LOCATION = END;

LENGHT = 4.. 54

Table 5.17: Query time cost vs. Number of record LOCATION = START,

MIDDLE, END; LENGHT = 4... 55

Table 5.18: Query time cost vs. Number of record LOCATION = START;

LENGHT = 1,2,3,4.. 56

Table 5.19: Query time cost vs. Number of record LOCATION = MIDDLE;

LENGHT = 1,2,3,4.. 57

Table 5.20: Query time cost vs. Number of record LOCATION = END;

LENGHT = 1,2,3,4.. 58

www.manaraa.com

1

Chapter One

Introduction

Usually data is stored in databases to process and manage its relations; some data
are classified as a high important data that needs to be high secured or on a level of
security, the best way to secure such data is to encrypt it. Many encryption algorithms were
studied and many designs of databases have prepared to put the considerations of
encryption and security of the databases. In this work we focus on how to solve the
problem of query the encrypted data in the database in a better response time beside
maintain the security of this data.

1.1: Thesis Contribution
The traditional way to search an encrypted data is to decrypt all the data to plain text

then find the target records. This way is obviously cost very time and has a bad
performance especially with a large number of records; our objective is to find another
ways which are faster.

We propose new methods to query encrypted data with many data types (string,
character, numeric and date). Our methods have a good comparable response time with the
traditional way. We also use an index over the data, the indexing information should be
related with the data well enough to provide an effective query execution mechanism; on
the other side, the relationship between indexes and data should not open the door to
linking that can comprise the protection.

We introduce three methods, The core of first method based on using a one-to-one
function that’s generates a new value for the original data, this function must be one way
function, so the attackers can't guess the original input value from the output value if using
the same function. We use two such functions, the hash function and the encryption
function. Another condition on this function is to be easy to use and have a good response
time.

The second method enhance the first method by using a HASH_MAP a data
structure that index the values, this enhance the first method response time and make it
faster. But it requires a huge memory size so it’s compatible with small databases or with
distributed servers.

The two first methods work on any data types with the equal condition, the third
method work on a fuzzy query, the fuzzy query is a query which has a ‘like’ statement.
This makes it harder to execute the query because the data in the database becomes
encrypted and the values of the characters changed, any mapping from the plain text to
encrypted text will be a weak that can be used by the attackers to find the original plain
text. The procedure to implement our method divides into two steps: first build the index by
mapping the plain text into numeric index that can be ordered easily by the DBMS, second
hide the values of this index. We explain in detail how to do the both steps and give a fully
examples, then prove the enhancement by the results.

www.manaraa.com

2

We have a compatible challenge, we do not know how the current DBMSs work
and we cannot add changes to its cores, that's needs an open source DBMS. In order to
solve this problem we have to make sure that our new method can adapt easily with the
DBMS. The solution is by implementing a layer over the DBMS, this layer is a simple
application that receives the clients request over the encrypted data, use our methods to
process the request over the encrypted data and send updated request to the DBMS, receive
the results from DBMS, do if needed any extra processing then return the results back to
the client.

Our proposed methods implement on a standard database from a universal
benchmark TPC-H and we use the data generator that is provided with this benchmark, all
of our methods implement over the tables’ layout from TPC-H and we test the experiments
over it.

The experiments prove the theoretical idea behind our work and this follows by a
comparison with the traditional way and a comparison between the methods cases itself.

1.2: Organization of the research
 The research is consists of five chapters, they are organized as the follows: the first
chapter is the introduction of our work. Chapter 2 is a related work. Chapter 3 is a
background of the ready encryption algorithm and hash algorithm used in our work.
Chapter 4 consists of the methodology used in our work; how to implement our work and
the architecture for our methods. In chapter 5 we give a brief results built on a selected
experiments and make a clear comparison between the experiments, analysis the results
focus on the performance. Finally in chapter 6 we list the conclusion of our work.

www.manaraa.com

3

Chapter Two

Related Work

2.1 Classification
 The related work of our research can be classified into four main categories. The
first category works on implementing a specific index for the encrypted data, our work can
be classified to this category. The second one works on defining new special purpose
encryption algorithms for the DBMS. The third category works on expecting the clients
request on encrypted data, define expectation and statistics to propose the more requested
encrypted data for each client and just decrypt this data. The fourth category works on
proposing a secure schema for the encrypted database.

2.2: Related Work
In [1] the major challenges and design considerations related to database encryption

were described. The article first presents an attack model and the main relevant challenges
of data security, encryption overhead, key management, and integration footprint. Next, the
article reviews related academic work on alternative encryption configurations; indexing
encrypted data; and key management. Finally, the article concludes with a benchmark using
the following design criteria: encryption configuration, encryption granularity and keys
storage. Dawn Xiaodong Song [2] proposes a new encryption method that allows searching
the encrypted data without decryption. However, the method is not adapted for database
encryption. Hankan Hacijumus [3] proposes a way that has a weakness; it will output false
joining records, which leads to the greatly increased cost of decrypting records and
degraded performance of query. They propose a schema of executing SQL over encrypted
data in the database-service-provider model. Then in [4] the writers proposed a new query
method, in which the query is completed on the server side and the client side together,
they have proposed bucket index, which support the range query for the numeric data. Then
they add a technique that supports arithmetic computation [5]. In [6] Hore optimized the
bucket index method on how to partition the bucket to get the trade between the security
and query performance. The methods based on index is supported by DBMS (Data Base
Management System), and focused on the query performance at the cost of storage space.
There are also some researches on the fuzzy query of character string. Zhengfei Wang
proposed a function to support fuzzy query over the encrypted character data [7] [8]. Their
method named pairing coding method, it encodes every adjacent two characters in sequence
and converted original string directly to another characteristic string by a hash function.
This method can’t deal with some characters, and could perform badly for big character
string. Paper [9] had proposed characteristics matrix to express string and the matrix will
also be compressed into a binary string as index. Every character string need a matrix size
of 259x256, it is large and will lead to much computation; in addition, the length of index
has come to more than hundred bits, which is not suitable for storage in database. In [10]
the paper works on a group of users that wants to access a secure data on a server. The
shared sensitive information requires more security and privacy protection, in this paper,
two schemes were proposed which can search the encrypted documents without re-

www.manaraa.com

4

encrypting all documents in a server even if group keys have to be updated. The schemes
can support general database normalization for encrypted database. Their experiments show
that their schemes are much more efficient than the comparables ones. Paper [11] only
encrypts the sensitive field and it is also using bucket index to improve query performance.
The order on numeric data is very useful. But on the character data, it has little effect. So
the method in [11] is not fit for the character data. [12] Creates a B+ tree index for the data
before encrypting them. When querying the encrypted data, firstly, it locates the encrypted
records related to the querying predicate based on the B+ tree index; secondly, it decrypts
the encrypted records to accomplish the results. Also, it must encrypt the B+ tree itself to
protect it from leaking confidential information. According to the structure of the B+ tree, it
encrypts each node of the B+ tree separately. The results of experiments in [12] show that
the query performance over the encrypted data decreases about 20 percent compared with
the plaintext query performance. In [13] the authors first survey the most relevant concepts
of database security and summarize the most well-known techniques. They focus on access
control systems, on which a large body of research has been devoted, and describe the key
access control models and the role-based access control model. They also discuss security
for advanced data management systems, and cover topics such as access control for XML.
They then discuss current challenges for database security and some preliminary
approaches that address some of these challenges. In [14] the paper presents a database
encryption scheme that provides maximum security, whilst limiting the added time cost of
encryption and decryption. On the other side, the queries such as sums, averages, counts
and other statistical functions that aggregate over a range of data in the database cannot be
performed directly in the proposed schema. Paper [15] presents a multilevel database
security model which needs an open source database to implement over it. It also increases
the complexity of access control. [16] Proposes an index mechanism of bucket index on the
character data, which has close relationships with all of its characters. The index tries to
translate the character string into a numeric data, on which the primary query will be
processed to filtrate the records roughly. Only the rest records need to be decrypted. But the
way cannot do the exception query over the database. Michael Mitzenmacher in [17]
introduces the Compressed Bloom filter which is a simple randomized data structure for
representing a set in order to support membership queries which can be used as index for
the data. In [18] the authors generalize the traditional Bloom filter to Weighted Bloom
Filter, which contains the information on the query frequencies and the membership
likelihood of the elements into its optimal design. In [19] the writers propose a secure
cipher index with great efficiency over the encrypted character data to improve the
performance of the encrypted database, the writers also studied the influence of some
parameters like the length of the character group. In [20] a bloom filter based index to
support fuzzy query over encrypted character data is proposed on the principle of two-
phase query. The proposed method performance decreases when increasing the length of
the sensitive data. Solution for SQL querying over database system containing encrypted
data of Yong Soon KIM and Eui Kyeong Hong in [21] is based on the UniSQL commercial
relational database management system version 6.3 and cannot be adapted with any other
DBMS. In [22] the paper address high-level authorization specifications and its efficient
implementation in object oriented database scenario. The papers discuss three different
types of access: Discretionary access control, Mandatory access control and role based
access control in Relational DBMS and object oriented data bases. The paper identified
some of the issues and current security models in object oriented database system. The

www.manaraa.com

5

writers in [23] developed an inference violation detection system to protect sensitive data
content, based on data dependency, database schema, and semantic knowledge. They gave
an example for illustrating the use of the proposed technique to prevent multiple
collaborative users from deriving sensitive information via inference. Their method is
based on an ideal case when they always have a full knowledge of the data and the users.
[24] Described and discussed various security issues in database. This paper is useful for
planning of explicit and directive based database security requirements. [25] Is more
specific compared with [24]. In [25] the writers focus on web database and how to protect
the database from the SQL attacks.

www.manaraa.com

6

Chapter Three

Background

3.1: Advanced Encryption Standard (AES) Algorithm

The Advanced Encryption Standard (AES) is a specification for the encryption of
electronic data. Originally called Rijndael, the cipher was developed by two Belgian
cryptographers, Joan Daemen and Vincent Rijmen [26].

AES has been adopted by the U.S. government and is now used worldwide. It
replaces the Data Encryption Standard (DES). The algorithm described by AES is
a symmetric-key algorithm, meaning the same key is used for both encrypting and
decrypting the data.

In our experiment we used AES-256 to encrypt the pre-selected column that’s
usually contains a high important data that is needed to be secured, the key of the AES will
created according to standards and will kept on a safe place.

AES is based on a design principle known as a substitution-permutation network,
and is fast in both software and hardware. Unlike its predecessor DES, AES does not use
a Feistel network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and
a key size of 128, 192, or 256 bits. By contrast, the Rijndael specification per se is specified
with block and key sizes that may be any multiple of 32 bits, both with a minimum of 128
and a maximum of 256 bits.

AES operates on a 4×4 column-major order matrix of bytes, termed the state,
although some versions of Rijndael have a larger block size and have additional columns in
the state. Most AES calculations are done in a special finite field.

The key size used for an AES cipher specifies the number of repetitions of
transformation rounds that convert the input, called the plaintext, into the final output,
called the ciphertext. The numbers of cycles of repetition are as follows:

 10 cycles of repetition for 128 bit keys.
 12 cycles of repetition for 192 bit keys.
 14 cycles of repetition for 256 bit keys.

Each round consists of several processing steps, including one that depends on the
encryption key itself. A set of reverse rounds are applied to transform ciphertext back into
the original plaintext using the same encryption key.

www.manaraa.com

7

3.2: High-level description of the algorithm

1. KeyExpansion—round keys are derived from the cipher key using Rijndael's key
schedule

2. Initial Round
1. AddRoundKey—each byte of the state is combined with the round key using

bitwise xor
3. Rounds

1. SubBytes—a non-linear substitution step where each byte is replaced with
another according to a lookup table.

2. ShiftRows—a transposition step where each row of the state is shifted
cyclically a certain number of steps.

3. MixColumns—a mixing operation which operates on the columns of the
state, combining the four bytes in each column.

4. AddRoundKey
4. Final Round (no MixColumns)

1. SubBytes
2. ShiftRows
3. AddRoundKey

3.3: SubBytes Step

Figure 3.1: SubByte Step in AES [26]

In the SubBytes step (Figure 3.1), each byte in the state matrix is replaced with
a SubByte using an 8-bit substitution box, the Rijndael S-box. This operation provides the
non-linearity in the cipher. The S-box used is derived from the multiplicative
inverse over GF(28), known to have good non-linearity properties. To avoid attacks based
on simple algebraic properties, the S-box is constructed by combining the inverse function
with an invertible affine transformation. The S-box is also chosen to avoid any fixed points,
and also any opposite fixed points.

www.manaraa.com

8

3.4: ShiftRows Step

Figure 3.2: ShiftRows Step in AES [26]

The ShiftRows step (Figure 3.2) operates on the rows of the state; it cyclically shifts
the bytes in each row by a certain offset. For AES, the first row is left unchanged. Each
byte of the second row is shifted one to the left. Similarly, the third and fourth rows are
shifted by offsets of two and three respectively. For blocks of sizes 128 bits and 192 bits,
the shifting pattern is the same. Row n is shifted left circular by n-1 bytes. In this way, each
column of the output state of the ShiftRows step is composed of bytes from each column of
the input state. (Rijndael variants with a larger block size have slightly different offsets).
For a 256-bit block, the first row is unchanged and the shifting for the second, third and
fourth row is 1 byte, 3 bytes and 4 bytes respectively—this change only applies for the
Rijndael cipher when used with a 256-bit block, as AES does not use 256-bit blocks.

3.5: MixColumns Step

Figure 3.3: MixColumns Step in AES [26]

In the MixColumns step (Figure 3.3), the four bytes of each column of the state are
combined using an invertible linear transformation. The MixColumns function takes four
bytes as input and outputs four bytes, where each input byte affects all four output bytes.
Together with ShiftRows, MixColumns provides diffusion in the cipher.

During this operation, each column is multiplied by the known matrix that for the
128 bit key is. The multiplication operation is defined as: multiplication by 1 means no
change, multiplication by 2 means shifting to the left, and multiplication by 3 means

www.manaraa.com

9

shifting to the left and then performing xor with the initial unshifted value. After shifting, a
conditional xor with 0x1B should be performed if the shifted value is larger than 0xFF.

In more general sense, each column is treated as a polynomial over GF(28) and is
then multiplied modulo x4+1 with a fixed polynomial c(x) = 0x03 · x3 + x2 + x + 0x02. The
coefficients are displayed in their hexadecimal equivalent of the binary representation of bit
polynomials from GF(2)[x]. The MixColumns step can also be viewed as a multiplication
by a particular MDS matrix in a finite field.

3.6: The AddRoundKey Step

Figure 3.4: AddRoundKey Step in AES [26]

In the AddRoundKey step (Figure 3.4), the subkey is combined with the state. For
each round, a subkey is derived from the main key using Rijndael's key schedule; each
subkey is the same size as the state. The subkey is added by combining each byte of the
state with the corresponding byte of the subkey using bitwise XOR.

On systems with 32-bit or larger words, it is possible to speed up execution of this
cipher by combining the SubBytes and ShiftRows steps with the MixColumns step by
transforming them into a sequence of table lookups. This requires four 256-entry 32-bit
tables, and utilizes a total of four kilobytes (4096 bytes) of memory — one kilobyte for
each table. A round then is done with 16 table lookups and 12 32-bit exclusive-or
operations, followed by four 32-bit exclusive-or operations in the AddRoundKey step.

If the resulting four kilobyte table size is too large for a given target platform, the
table lookup operation can be performed with a single 256-entry 32-bit (i.e. 1 kilobyte)
table by the use of circular rotates.

Using a byte-oriented approach, it is possible to combine the SubBytes, ShiftRows,
and MixColumns steps into a single round operation.

www.manaraa.com

10

3.7: Hashing: SHA-1 (Secure Hash Algorithm)

In our experiments we used SHA-1 as a hashing algorithm; SHA-1 is the most
widely used of the existing SHA hash functions, and is employed in several widely used
applications and protocols.

SHA-1 produces a 160-bit message digest based on principles similar to those used
by Ronald L. Rivest of MIT in the design of the MD4 and MD5message digest algorithms,
but has a more protective design [27].

The original specification of the algorithm was published in 1993 as the Secure
Hash Standard, FIPS PUB 180, by US government standards agency NIST (National
Institute of Standards and Technology). This version is now often referred to as SHA-0. It
was withdrawn by NSA shortly after publication and was superseded by the revised
version, published in 1995 in FIPS PUB 180-1 and commonly referred to as SHA-1. SHA-
1 differs from SHA-0 only by a single bitwise rotation in the message schedule of
its compression function; this was done, according to NSA, to correct a flaw in the original
algorithm which reduced its cryptographic security. However, NSA did not provide any
further explanation or identify the flaw that was corrected. Weaknesses have subsequently
been reported in both SHA-0 and SHA-1. SHA-1 appears to provide greater resistance to
attacks, supporting the NSA’s assertion that the change increased the security.

Figure 3.5: One iteration within the SHA-1 compression function: A, B, C, D and E are 32-

bit words of the state; F is a nonlinear function that varies; n denotes a left bit rotation

by n places; n varies for each operation; Wt is the expanded message word of round t;

Kt is the round constant of round t; denotes addition modulo 232.[27]

www.manaraa.com

11

3.8: Hash Map
In computer science, a hash map is a data structure that uses a hash function to map

identifying values, known as keys (e.g., a person's name), to their associated values (e.g.,
their telephone number) (Figure 3.6). Thus, a hash map implements an associative array.
The hash function is used to transform the key into the index (the hash) of an array element
(the slot or bucket) where the corresponding value is to be sought. In a well-dimensioned
hash map, the average cost (number of instructions) for each lookup is independent of the
number of elements stored in the table. At the heart of the hash map algorithm is a simple
array of items; this is often simply called the hash table. Hash table algorithms calculate an
index from the data item's key and use this index to place the data into the array. The
implementation of this calculation is the hash function:

Index = f(key, array Length)

Figure 3.6: A small phone book as a hash table [28]

www.manaraa.com

12

Chapter Four

Methodology

4.1: Layering Technique

In order to implement our work we need an open source database, the drawback for
this technique is that our work can adapt only with this type of the database and can't work
with the commercial databases like Oracle, MS SQL, MS Access, MySQL, … etc which
surely are closed source. To solve this problem, we developed another way to implement
our work to adapt with any kind of DBMS. We add a layer above any kind of DBMS, this
layer have the responsibility to manage the way to query over encrypted data.

The drawback for adding the new layer is the response time; the results prove that
the performance of adding the layer will be much better when working on encrypted data
with the traditional way.

The client will work over the layer which will contact with DBMS figure (4.1).

Figure 4.1: The Layer over the DBMS

The layer will provide the inner needed method for the methodology of process the
encrypted data. The layer is better to be placed on the same place with the DBMS for two
reasons:

1- Decreases the time of contacting with DBMS

2- Security purpose, the DBMS is usually placed on a safe place from the attackers.

The implementation of the layer can be as a service that has a port to connect with.

Encrypted Data

DBMS

Layer

Client Client Client

www.manaraa.com

13

4.2: Architecture of the first Method

We implement two ways to work the first adding new hash column the second using
the same encrypted column. The core of first method based on adding a new column for
each encrypted column, this column contains a unique value for each appreciate plain value
that will encrypted, In our method we used a hash algorithm to generate the 1-to-1 mapping
from the plain data to unique hash values (Figure 4.2).

Figure 4.2: Index over hashed data

An index is build over the hashed column that makes the searching over the values
in the hash column faster. By finding the needed hash value we find the needed plain text.

The second way is to work over the encrypted column directly without using any
extra column.

An index is build over the encrypted column that makes the searching over the
values in the encrypted column faster (Figure 4.3). By finding the needed encrypted value
we find the needed plain text. That’s done by using the same encryption/decryption
algorithm with the same symmetric key which must be kept secret away from the attackers.

Figure 4.3: Index over encrypted data

Create

In
de

x
ov

er
 h

as
he

d
va

lu
es

 Hashed Column

Encrypted Column

• Hash(Data1)
• Hash(Data2)
•
•
•

• Enc-Data1
• Enc-Data2
•
•
•

In
de

x
ov

er

www.manaraa.com

14

The architecture of the layer is shown in figure (4.4). The queries from the client
sent to the layer which has a subsystem called the Query Processor to check in the Meta
data if there is any query on an encrypted column. The Meta data contains information of
the encrypted columns in their tables and the corresponding hashed columns (if using the
hash function) table 4.1.

Figure 4.4: Architecture of the layer for the first method

This first way will cost more time especially with the insertion and updating on the
encrypted column. Any insert or update statement must be followed by an
inserting/updating value on the hash column.

Table 4.1: Meta data example

Table Name Encrypted Column Hash Column

CUSTOMER C_PHONE H_C_PHONE

… … …

When using the hash function as the one-way function the Query Processor replaces
the client query with 'where' clause on encrypted data value with another one on the hashed
data value. When using the encryption function as the function, the Query Processor
replaces the client query with 'where' clause on encrypted data value with another with an
encryption on the plain searched data. For example if table CUSTOMER has an encrypted
column C_PHONE and the client query is:

SELECT * FROM CUSTOMER

WHERE C_PHONE = '02 526 544';

By using the tradition way we need to decrypt all the values of C_PHONE then
check which one equals '02 526 544', this means a huge response time especially with a
large number of records.

By using our technique and using the hash function, there will be another column
appropriate for the C_PHONE contains the hashed values of C_PHONE named
H_C_PHONE.

Query Processor Meta Data

Encryption/Decryption
Function

Hash Function

Clients DBMS

www.manaraa.com

15

The query processor will replace the where statement to be

SELECT C_NAME FROM CUSTOMER

WHERE H_C_PHONE = HASH_VALUE('02 526 544');

By using the index over H_C_PHONE it will be fast and easy to find the row that
has the value of '02 526 544' on C_PHONE without decrypt any value which mean a better
response time.

By using our technique and using the encryption function, the query processor will
replace the where statement to be

SELECT C_NAME FROM CUSTOMER

WHERE C_PHONE = encrypt('02 526 544');

By using the index over C_PHONE it will be fast and easy to find the row that has
the value of '02 526 544' on C_PHONE without needing to decrypt all the values which
means a better response time.

Our method can works also with the range of values for example, if the client query
on the encrypted column is:

SELECT * FROM CUSTOMER

WHERE C_PHONE IN (’02 526 878’, ’02 584 231’, ’03 874 214’);

The translated query will be

SELECT * FROM CUSTOMER

WHERE H_C_PHONE IN (HASH_VALUE(’02 526 878’),
HASH_VALUE(’02 584 231’), HASH_VALUE(’03 874 214’));

And if we used the encryption algorithm:

SELECT * FROM CUSTOMER

WHERE C_PHONE IN (encrypt(’02 526 878’), encrypt (’02 584 231’),

encrypt (’03 874 214’));

Analysis:

Using of encryption algorithm means that we don’t need to add a new column for
the hashed values of the plain text but in the other side we need to use the key of the
encryption/decryption algorithm to encrypt the client condition, decreasing the usage of the
key means more security.

www.manaraa.com

16

The security of our methods depends on the security of the key of the
encryption/decryption algorithm and the strength of the algorithm itself: hash algorithm and
encryption/decryption algorithm. In our implementation we used AES-256 as the
encryption/decryption algorithm and SHA-1 as hash algorithm.

4.3: Architecture of the Second Method

The core of our method based on using the hash map. The data is stored on the Hash
Map by using the function PutValue(Key, Value), the Key is an identifier to the Value, we
use the function GetValue(Key): Value to get the Value by passing the Key. In our
methodology the Key will be the plain text and the Value will be the Encrypted plain text;
i.e. encrypted Key.

Value = Enc(Key)

This way will cost extra time especially with the insertion and updating on the
encrypted column. Any insert or update statement must be followed by an
inserting/updating value on the Hash Map. The time complexity for the Hash Map in big O
notation is O(1) for the search and O(1) for the insert in average, O(n) for the search and
O(1) for the insert in worst case, so the extra time needed for insert and update is
acceptable.

The architecture of the layer is shown in figure (4.5). The queries from the client
sent to the layer which has a subsystem called the Query Processor to check in the Meta
data if there is any query on an encrypted column. The Meta data contains an instance of a
data structure object called Hash Map. The Hash Map stores the mapping between the plain
text and the encrypted text as KEY: VALUE, in which the KEY is the plain text and the
VALUE is the encrypted value of the plain text. The Hash Map contains two main
operations, PutValue and GetValue. PutValue(Key , Value), GetValue(Key): Value.

The Query Processor replaces the client query with 'a plain where' clause on
encrypted data value (the where clause is a plain text) with another one with an encryption
on the plain searched data. For example if table CUSTOMER has an encrypted column
C_PHONE and the client query is:

SELECT * FROM CUSTOMER

WHERE C_PHONE = '02 526 544';

By using the tradition way we need to decrypt all the values of C_PHONE then
check which one equals '02 526 544', this means a huge response time especially with a
large number of records.

By using our technique and using the Hash Map, the query processor will first
search the Hash Map for the Key = '02 526 544' and get the Value which will be the
ENC_VALUE ('02 526 544'), then replaces the where statement to be:

www.manaraa.com

17

SELECT C_NAME FROM CUSTOMER

WHERE C_PHONE = ENC_VALUE('02 526 544');

By using the index over C_PHONE it will be fast and easy to find the row that has
the value of '02 526 544' on C_PHONE without needing to decrypt all the values which
means a better response time.

Figure 4.5: Architecture of the layer for the second method

Analysis:

The main difference between the first and the second method is that the first method
works on the mapping which stored in the database (Hard Disk) but the second method
works on the mapping which stored in the memory as a data structure (Hash Map) have
O(1).

The second method didn’t fit with the databases which have tables with a large
number of records because it will take a huge memory and there will be a need for virtual
memory which decrease the response time of this method.

Using of the distributed systems with distributed shared memory can be a part of
solution for this problem (working with large databases).

The secure of the Hash Map depends on the security of its hash function; in our
method we used SHA-1 as the hash algorithm for the Hash Map.

4.4: Architecture of the third Method

In the previous sections we work on the specific user query which includes “equal”
expression in the where condition for example:

Select * from table1 where column1 = value

Our previous work works on any data type on a specific value. We introduce here
another enhanced method which works on fuzzy query; the fuzzy query is a query which
contains a “like” statement.
For example in the following SQL clause, the string ‘s

1
s

2
s

3
…s

x
’ is the match_expression.

Query Processor Meta Data

Encryption/Decryption
Function

Hash Map

Clients DBMS

www.manaraa.com

18

SELECT * FROM table_name WHERE column_name = ‘s
1
s

2
s

3
…s

x
’

It is an exact match, while in the fuzzy match, there will be some wildcard

characters (‘like’, ’%’).

We will have a problem that the SQL clauses cannot execute over the encrypted
data directly. In this work we propose a secure cipher index with great efficiency over the
encrypted character data to improve the performance of the encrypted database. The idea is
to map the target character data in the database into its index value, and translate the SQL
clauses into a usable form to execute over the index attribute. Hash key and some other
techniques are introduced to make the cipher index secure. In this schema, the same
character data in different rows has different index value and the index value has no
statistical characteristic, so it can avoid the problem of statistical attack and plain attack.
When there is a query over the encrypted attribute, we filter out the rows through the index
and only decrypt the matching ones, which could reduce the decryption cost greatly and
prevent the information leaking.

Our work consists of two steps: creating the index and hiding the index.

We will use the following notations in our work

S: the string value on the target column

si : the ith character in S

E: the encryption function

E(S): the encrypted value for S

X(S): the indexed value for S

Xi: the ith character in X(S)

Hi: the numeric hashed value for si

Match_expression : The character value appeared in the where clause

Hash_Key: The key introduced to the hash function

4.4.1: Step1: Creating the index
For each target column (need to be encrypted), we add a new column named

columnName_index which will be the index of the target column.
In order to enable the working on fuzzy query we will work on the character level, we will
match each character in the target column to a numeric value.

In order to match the characters to numeric values we will use a hash function takes
the character si and the hash_key as its input parameters and produces a hashed numeric
value hi.
In our schema hi must be one digit numeric value so we limit the group of hash function
output values between 0 and 9.

www.manaraa.com

19

At this point it is easy for the attackers to get the plain text by making a statistical

attack and plain attack, so in order to make it hard we will use a different hash_key for
every table, the hash_keys must be stored in a safe place as a table like the one in the table
4.2:

Table 4.2: TABLES_HASHES example

Table Name Hash_Key

REGION X58@

CUSTOMERS Ds85#ed

Table3 Hui

… …

We named this table by TABLES_HASHES

If we choose the table REGION from the tpc-h tables layout and we chose the column
NAME to be encrypted and for example the NAME value for the first row in table
REGION is “GAZA”, and by assume the hash_key for this table is “X58@” the process of
mapping the plain word to the index will be:

1- divide the word S

The word S will be divided into its characters si

So the word “GAZA” with be G, A, Z, A

2- Mapping each character to a numeric value of one digit

By using the hash function and the hash key “X58@” the output values will be like:

H(G, X58@) = 8

H(A, X58@) = 7

H(Z, X58@) = 4

H(A, X58@) = 7

This process can be shown in table 4.3.

www.manaraa.com

20

Table 4.3: Creating the index

ID REGIONKEY NAME E(NAME) HASH_KEY H(NAME)

1 5 GAZA As$fs54a= X58@ 8747

2 5 GAZA As$fs54a= X58@ 8747

3 6 CAIRO Ds33##442 X58@ 97563

… … … … … …

Note that the character “A” in word “GAZA” will be matched to the same numeric
value in the same row and equal to the value in the second ROW and the numeric value for
the third ROW. This can be a port to the attackers to find the original plain text.
Note that the HASH_KEY is not a part of the table and we put it here for explain only.

4.4.2: Step 2: Hiding the index

In order to solve the above problem we introduce another function R and put a
condition that this function must be calculated easily and its calculation time must be <<
the calculation time required for E, another condition that is R must be invertible.
Condition:

O(R) << O(E)

For example this function can be the XOR, XNOR, ADD, and MULTIPLICATION.

We introduce another table for mapping tables, rows, functions and the keys for
these functions. We named this table TABLES_FUNCTIONS. We assume that
TABLES_FUNCTIONS is stored in a safe place.

Table 4.4: TABLES_FUNCTIONS example

Table_Name Row_ID Function (R) Key

REGION 1 XOR HG452152

REGION 2 XNOR FV21R4

Customer 1 ADD OP854D

… … … …

The functions are selected from the group G ={XOR, XNOR, ADD, MULTIP}, the

keys are generated randomly.

www.manaraa.com

21

The row id can be getting easily from the DBMS. We use more than one R to make
it harder to the attacker to know the original index and we use different keys for the same
purpose.
The next mission is to use these functions to hide the index, for the example table REGION
we add another column INDEX_ .

The INDEX_ column is calculated as follows:

Suppose we need to create the INDEX_ for the row id = 1 in the table REGION, we
first select the function R and the KEY from TABLES_FUNCTIONS.

INDEX_ = H(NAME) [FUNCTION] KEY

SELECT function, key from TABLES_FUNCTIONS

WHERE TABLE_NAME = ‘REGION’

AND ROW_ID = 1;

This select statement will returns FUNCTION = XOR and KEY = HG452152.
We use these outputs to generate the INDEX_ as :

INDEX_ = H(NAME) XOR HG452152= 8747 XOR HG452152

Let denotes the length of H(NAME) by L, and the length of the KEY by Lk

If L < Lk , then we add the first (Lk-L) bits from KEY to the end of the H(NAME).

If L > Lk, then we add the first (L-Lk) bits from the KEY to the end of the KEY.

By using this way we hide the length of the H(NAME) and make it harder for the attacker

to guess the H(NAME).

The results of this operation are described in table.

Table 4.5: Hiding the index

ID REGIONKEY NAME E(NAME) HASH_KEY H(NAME) INDEX_

1 5 GAZA As$fs54a= X58@ 8747 58KJBVNT

2 5 GAZA As$fs54a= X58@ 8747 IOPSDE

3 6 CAIRO Ds33##442 X58@ 97563 8TFS3C

… … … … … … …

www.manaraa.com

22

Note the following:

- The length of H(NAME) in ID = 1 and ID = 2 are equal but the length of their

INDEX_ are different due to using a different keys.

- The same H(NAME) in ID = 1 and ID = 2 produces a different INDEX_.

- The character A in GAZA is mapped to different values in the same row in the ID =

1.

- The character A in GAZA is mapped to different values in row ID = 1 and row ID =

2.

- The character A in GAZA and CARIO is mapped to different values in row ID = 1

and row ID = 2 and row ID = 3.

www.manaraa.com

23

4.4.3: Running Fuzzy query over the index

Suppose there is a select query over the encrypted data, and the tables in this query
is indexed used our way.
The first select query:

 SELECT * FROM REGION

 WHERE NAME LIKE ‘G%’;

First we select the function (R) and the key from TABLES_FUNCTIONS. The
DBMS can also have a cash of this information because it usually used, this make it faster.

SELECT ROW_ID, Function, Key

FROM TABLES_FUNCTIONS

 WHERE TABLE_NAME = ‘REGION’;

After that we use ROW_ID, Function and Key to return the INDEX_ in table region
to H(NAME) by using the equation:

H(NAME) = INDEX_ (FUNCTION) -1 Key

So for the ROW_ID = 1 it will be:

H(NAME) = 58KJBVNT (XOR)-1 HG452152

= 58KJBVNT XOR HG452152

= 8747

For the ROW_ID = 2 it will be:

H(NAME) = IOPSDE (XOR)-1 FV21R4

= IOPSDE XOR FV21R4

= 8747

www.manaraa.com

24

For the ROW_ID = 3 it will be:

H(NAME) = 8TFS3C (ADD)-1 OP854D

= 8TFS3C SUB OP854D

= 97563

And so on.

Then we used TABLES_HASHES to get the HASH_KEY for table REGION.

 SELECT HASH_KEY FROM TABLES_HASHES

 WHERE TABLE_NAME = ‘REGION’;

Which return the HASH_KEY = X58@. We use this Hash key to get the mapping from the
character to number.
The condition in the select statement will be changed to be:

 SELECT * FROM REGION

 WHERE = INDEX_ (FUNCTION) -1 Key LIKE ‘H(G, X58@) %’;

=

 SELECT * FROM REGION

 WHERE H(NAME) LIKE ‘8 %’;

It easily for the DBMS to execute the above query over the H(NAME) of the table
REGION and returns the ROWS_IDs = 1,2 as a result of this query.

Table 4.6: Result of the query for ROWS_IDs = 1,2

ID REGIONKEY E(NAME) H(NAME) INDEX_

1 5 As$fs54a= 8747 58KJBVNT

2 5 As$fs54a= 8747 IOPSDE

The DBMS does not need to encrypt all the table, an just encrypt the returned
records, this obviously decrease the time need to execute the user query over encrypted and
enable the user to use a fuzzy query on that encrypted data.

Suppose the condition in the select statement will return data with different words,

our way will work also.

www.manaraa.com

25

Suppose the select statement is:

SELECT * FROM REGION

WHERE NAME LIKE ‘%A%’;

First we select the function (R) and the key from TABLES_FUNCTIONS.
After that we use ROW_ID, Function and Key to return the INDEX_ in table region to
H(NAME) by using the equation:

H(NAME) = INDEX_ (FUNCTION) -1 Key

Then we used TABLES_HASHES to get the HASH_KEY for table REGION.
Which return the HASH_KEY = X58@. We use this Hash key to get the mapping from the
character to number.
The condition in the select statement will be changed to be:

 SELECT * FROM REGION

 WHERE = INDEX_ (FUNCTION) -1 Key LIKE ‘%H(A, X58@) %’;

=

 SELECT * FROM REGION

 WHERE H(NAME) LIKE ‘%7 %’;

It easily for the DBMS to execute the above query over the H(NAME) of the table
REGION and returns the ROWS_IDs = 1,2, 3 as a result of this query.

Table 4.7: Result of the query for ROWS_IDs = 1,2, 3

ID REGIONKEY E(NAME) H(NAME) INDEX_

1 5 As$fs54a= 8747 58KJBVNT

2 5 As$fs54a= 8747 IOPSDE

3 6 Ds33##442 97563 8TFS3C

This proves that our way can be used widely in different fuzzy query.

www.manaraa.com

26

Analysis: Collision Problem
In our method we map the characters values in the plain text to numeric values

between 0 and 9, this can make a collision, for example:

Character X1 can be mapped to numeric value N1 and Character X2 can be mapped
to the same numeric value N1.

This problem happens because the range of the numeric values which is in our

method between 0 and 9 is less than the range of the characters values.
The collision problem means that the select statement may return rows that are not

satisfy the condition and they must be decrypted to filter out these rows.
Changing the scope of the numeric values and make it larger will solve the collision
problem but in the other side will make the need to have a two digit numbers and this will
make another problem in our schema, suppose the range of the numeric values is between 0
and 100, the hash function map the character value ‘x1’ to 3 and map the character value
‘x2’ to 33, it can be a miss understanding of is 33 maps to one ‘x2’ or maps to two ‘x1’?
This means that the select statement which has the condition :

= INDEX_ (FUNCTION) -1 Key LIKE ‘%3%’

will returns all the rows have ‘x1’ or ‘x2’ and they must be decrypted and filtered out.

Mapping the characters values to non-numeric data types will make the index
slower or stop the index so it is not acceptable.

Architecture of the layer for the third method
The architecture of the layer is shown in figure (4.6). The queries from the client

sent to the layer which has a subsystem called the Query Processor to check in the Meta
data if there is any query on an encrypted column. The Query Processor replaces the client
query with 'a plain where' clause on encrypted data value (the where clause is a plain text)
with another one with which will work on our numeric index. The main responsibility for
Query Processor is to map the searched text on fuzzy query to numeric values work on our
index.

The Index_Maping_Info contains secure information on how to build the index and
how to map the characters values to numeric values and important information about the
functions used on building the index.

Figure 4.6: Architecture of the layer of the third method

Query Processor Meta Data

Encryption/Decryption
Function

Index Mapping Info

Clients DBMS

www.manaraa.com

27

Chapter Five

Experiments and Analysis of Performance

5.1: Experiments environment

The purpose of the experiments is to show the validity and the efficiency of our
proposed approach.

According to TPC-H benchmark, the data in the database is automatically created
by using the tool dbgen. TPC-H database include eight tables, of which used in our
experiment is customer table. To encrypt data of the tables, AES -256 encryption algorithm
implemented in Delphi is used. The experiments are conducted on a personal computer
with Intel Core2 Due 2.10 GHz and 2.87 GB RAM. Relevant software components used
are Windows 7 as the operating system and Oracle 11g R2 as the database server. The layer
is implemented by using the Delphi as a programming language. We test the different
methods by measure the response time of the query over the table has a number of records
ranging from 100 to 10000 records.

Database Entities, Relationships, and Characteristics
The components of the TPC-H database are defined to consist of eight separate and

individual tables. The relationships between columns of these tables are illustrated in
Figure 5.1

Data Generator
The DBGEN program used to generate the data that populate the TPC-H Databases.

Querying over Encrypted data using traditional way
In the experiment, we test query execution time through comparing two different

query approaches. The first way is the traditional way; decrypt all encrypted character data
before querying them. The second way, which we propose in this work, is to decrypt the
result records after filtering the records not related to querying conditions.

Algorithm 5.1: Query over encrypted data.

Purpose: To return the result of a query over encrypted data with a better response time
than the traditional way.

INPUT: Query which has a where statement on an encrypted data.

OUTPUT: Collection of records satisfying with the where statement of the query.

www.manaraa.com

28

Procedure:

(1) Receiving the query from the client

(2) Checking the metadata if the condition is over an encrypted column

(3) If so, changing the query to work over the index using the rules of our methods

(4) Executing the new query, returning the records satisfying the translated query
conditions

(5) Decrypting the result records and obtaining the actual results

(6) Filter out the actual results if needed

(7) Returning the filtered results to the client

Figure 5.1: The TPC-H Schema

www.manaraa.com

29

Required Tables

The following list defines the required structure (list of columns) of each table.

PART Table Layout
P_PARTKEY identifier SF*200,000 are populated
P_NAME variable text, size 55
P_MFGR fixed text, size 25
P_BRAND fixed text, size 10
P_TYPE variable text, size 25
P_SIZE integer
P_CONTAINER fixed text, size 10
P_RETAILPRICE decimal
P_COMMENT variable text, size 23
Primary Key: P_PARTKEY

SUPPLIER Table Layout
S_SUPPKEY identifier SF*10,000 are populated
S_NAME fixed text, size 25
S_ADDRESS variable text, size 40
S_NATIONKEY identifier Foreign key reference to N_NATIONKEY
S_PHONE fixed text, size 15
S_ACCTBAL decimal
S_COMMENT variable text, size 101
Primary Key: S_SUPPKEY

PARTSUPP Table Layout
PS_PARTKEY identifier Foreign key reference to P_PARTKEY
PS_SUPPKEY identifier Foreign key reference to S_SUPPKEY
PS_AVAILQTY integer
PS_SUPPLYCOST decimal
PS_COMMENT variable text, size 199
Compound Primary Key: PS_PARTKEY, PS_SUPPKEY

CUSTOMER Table Layout
C_CUSTKEY identifier SF*150,000 are populated
C_NAME variable text, size 25
C_ADDRESS variable text, size 40
C_NATIONKEY identifier Foreign key reference to N_NATIONKEY
C_PHONE fixed text, size 15
C_ACCTBAL decimal
C_MKTSEGMENT fixed text, size 10
C_COMMENT variable text, size 117
Primary Key: C_CUSTKEY

www.manaraa.com

30

ORDERS Table Layout
O_ORDERKEY identifier SF*1,500,000 are sparsely populated
O_CUSTKEY identifier Foreign key reference to C_CUSTKEY
O_ORDERSTATUS fixed text, size 1
O_TOTALPRICE decimal
O_ORDERDATE date
O_ORDERPRIORITY fixed text, size 15
O_CLERK fixed text, size 15
O_SHIPPRIORITY integer
O_COMMENT variable text, size 79
Primary Key: O_ORDERKEY
Comment: Orders are not present for all customers. In fact, one-third of the customers do
not have any order in the database. The orders are assigned at random to two-thirds of the
customers. The purpose of this is to exercise the capabilities of the DBMS to handle "dead
data" when joining two or more tables.

LINEITEM Table Layout
L_ORDERKEY identifier Foreign key reference to O_ORDERKEY
L_PARTKEY identifier Foreign key reference to P_PARTKEY, Compound
Foreign Key Reference to (PS_PARTKEY, PS_SUPPKEY) with L_SUPPKEY
L_SUPPKEY identifier Foreign key reference to S_SUPPKEY, Compound
Foreign key reference to (PS_PARTKEY, PS_SUPPKEY) with L_PARTKEY
L_LINENUMBER integer
L_QUANTITY decimal
L_EXTENDEDPRICE decimal
L_DISCOUNT decimal
L_TAX decimal
L_RETURNFLAG fixed text, size 1
L_LINESTATUS fixed text, size 1
L_SHIPDATE date
L_COMMITDATE date
L_RECEIPTDATE date
L_SHIPINSTRUCT fixed text, size 25
L_SHIPMODE fixed text, size 10
L_COMMENT variable text size 44
Compound Primary Key: L_ORDERKEY, L_LINENUMBER

NATION Table Layout
N_NATIONKEY identifier 25 nations are populated
N_NAME fixed text, size 25
N_REGIONKEY identifier Foreign key reference to R_REGIONKEY
N_COMMENT variable text, size 152
Primary Key: N_NATIONKEY

www.manaraa.com

31

REGION Table Layout
R_REGIONKEY identifier 5 regions are populated
R_NAME fixed text, size 25
R_COMMENT variable text, size 152
Primary Key: R_REGIONKEY

5.2: Results for the First Method

We did experiments for the following cases:

1- The tradition method: query all the selected data with ignoring the where statement,
decrypt the encrypted columns in the where statement, then filter the needed rows that
have the values of the where statement.
We marked this method by: DEC_ALL

2- The enhanced hash method: replace the where statement on the encrypted columns with
a where statement on the hash value of the searched plain text on the hash columns.
We marked this method by: HASH_METHOD

3- The enhanced encrypt method: replace the where statement on the encrypted columns
with a where statement on the encrypt value of the searched plain text.
We marked this method by: ENC_METHOD

The results of each method are listed below in table 5.1

TABLE 5.1: QUERY TIME COST VS. NUMBER OF

RECORD FOR THE FIRST METHOD.

No Of Records 100 500 1000 10000

DEC_ALL* 864 4013 6800 47578

HASH_METHOD* 32 35 37 34

ENC_METHOD* 35 31 39 37

HASH_METHOD 5 7 4 6

ENC_METHOD 7 5 5 6

DEC_ALL 821 4189 6882 47565

*Has selected encrypted columns

www.manaraa.com

32

In Table 5.1 we measured the query time in mille second when we try to execute a
query have a condition on encrypted column for the methods: DEC_ALL, ENC_METHOD
and HASH_METHOD when there is a select on encrypted column and when there is no
select on the encrypted column. We increase the number of records on the target table from
100 to 10000 and listed the response time for all the methods.

Figure (5.2) shows the cost of query-execution time of the three kinds of querying
methods when the size of the data increased from 100 to 100000 records. We measured the
time in mille second. The experiments are done for the two cases; with selected encrypted
column and without. We mark the results of the experiments with using a select statement
having selection on an encrypted column by *.

For example suppose we have two encrypted columns x and y, and the query has a
where condition on the encrypted column x, the query which has selection on an encrypted
column (which marks by * in Figure 5.2) will be like:

SELECT (y or x) FROM table1 WHERE condition = x;

The query which will not have selection on an encrypted column will be like:

 SELECT (any column except x and y) FROM table1 WHERE condition = x;

Figure 5.2. Comparing between the first method and the traditional method

We found that DEC_ALL is relatively costly and there is a huge difference between
the tradition DEC_ALL method and our methods. This difference is obviously due to the
number of records needs to decrypt in each of the methods. In the DEC_ALL, first, all the
records in the table needs to be decrypt in the advance, then the decrypted records which
are now a plain text have to be filtered as the condition in the where statement. The results
of DEC_ALL are related to the number on records in the target table.

The results of HASH_METHOD and DEC_METHOD show that there is a much
improvement in the response time in compare with the DEC_ALL method. This
improvement due to needing to use the hash or decrypt function one time only, the other
operations needed (replacements of the where conditions, … etc) are done in the memory

www.manaraa.com

33

and need very little time in compare with the time needed when using the hash or decrypt
functions.

The number of records in the table does not affect the response time; this is due to
using the index so the values are ordered.

Figure 5.3: Results of executing the same query using HASH_METHOD and
ENC_METHOD

In figure (5.3), a comparison in made between the HASH_METHOD and
DEC_METHOD, we didn’t include the results of DEC_ALL because they are relatively
much bigger so the graph will not give us a meaningful view. The results of figure (5.3)
show that in the first case, in which the select statement has a select on an encrypted
column that the HASH_METHOD* and DEC_METHOD* are relatively equal in response
time, this results can be changed if using another encryption algorithm or using the same
algorithm (AES) with a smaller key size instead of 256, but of course it will affect the
security of the encrypted data. In HASH_METHOD without a select statement on an
encrypted column we don’t use the cipher key which must be secure and hide in a safe
place away from the clients. From the security side we can say is some cases when the
select query has a where condition on an encrypted column but doesn’t not select any
encrypted column we don’t use the cipher key which is more secure than using the
decryption algorithm. The hash algorithm will cost much when there is an insert or update
on a value on the encrypted column because we need an extra insert or update on the hash
column, but this case (the insert and update statements) are not studied in this paper and we
focus here on the select statement.

www.manaraa.com

34

5.3: Results for the Second Method
We did experiments for the following cases:

1- The tradition method: query all the selected data with ignoring the where statement,
decrypt the encrypted columns in the where statement, then filter the needed rows that
have the values of the where statement.
We marked this method by: DEC_ALL

2- The enhanced method: replace the where statement on the encrypted columns with a
where statement on the encrypt value of the searched plain text.
We marked this method by: ENH_HASH_METHOD

The results of each method are listed below in table 5.2.

TABLE 5.2: QUERY TIME COST VS. NUMBER OF RECORD

FOR THE SECOND METHOD.

No Of Records 100 500 1000 10000

DEC_ALL* 864 4013 6800 47578

ENH_HASH_METHOD* 9 8 8 9

DEC_ALL 821 4189 6882 47565

ENH_HASH_METHOD 4 6 5 6

*Has selected encrypted columns

Figure (5.4) shows the cost of query-execution time of the two kinds of querying
methods when the size of the data increased from 100 to 100000 records. We measured the
time in mille second.

Figure 5.4: Comparing between the second method and the traditional method

www.manaraa.com

35

The results prove that our method have a better response time in compare with
DEC_ALL. This difference is obviously due to the number of records needs to decrypt in
each of the methods. In the DEC_ALL, first, all the records in the table needs to be decrypt
in the advance, then the decrypted records which are now a plain text have to be filtered as
the condition in the where statement. The results of DEC_ALL are related to the number on
records in the target table.

The results of ENH_HASH_METHOD show that there is a much improvement in
the response time in compare with the DEC_ALL method. This improvement due to
needing to use the decryption function one time only, the other operations needed
(replacements of the where conditions and search the Hash Map) are done in the memory
and need very little time in compare with the time needed when using the decryption
functions.

The number of records in the table does not affect the response time; this is due to
using the Hash Map to search the needed record in the database table which column is
indexed so the values are ordered.

Figure 5.5. Results of executing the same query using ENH_HASH_METHOD

In figure (5.5), a comparison in made between the ENH_HASH_METHOD and
ENH_HASH_METHOD*, we didn’t include the results of DEC_ALL because they are
relatively much bigger so the graph will not give us a meaningful view. The results of
figure (5.5) show that in the first case, in which the select statement has a select on an
encrypted column that the ENH_HASH_METHOD* have a little more response time due
to the time needed to decrypt the encrypted column. Using Hash Map will cost when there
is an insert or update on a value on the encrypted column, but will be less than the time
needed when use the HASH_METHOD from the first method but this case (the insert and
update statements) are not studied in this paper and we focus here on the select statement.

www.manaraa.com

36

5.4: Results for the third method

The TPC-H schema is used and we work here on the same table of the previous
experiments (CUSTOMER) table.

The comparison is done between the traditional method and our method, we used

fuzzy query on one character, two characters, three characters and four characters, this
characters are located in the start of the word, middle and end of the word; for example:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘j%’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘jo%’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘joh%’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘john%’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%o%’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%oh%’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%ohn%’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%ohns%’;

www.manaraa.com

37

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%n’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%on’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%son’;

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%nson’;

The comparison is made as the following:

1- The tradition method: query all the selected data with ignoring the where statement,
decrypt the encrypted columns in the where statement, then filter the needed rows that
have the values of the where statement.

2- Our new method, translate the fuzzy query on the encrypted column and using our
index to find out the target condition, then decrypt the results and filter out them to
remove the collision based on the condition.

We marked this method by: DEC_ALL

We marked this method by: FUZZY_METHOD

We make the experiments and write down the results when the number of the characters
in the fuzzy condition changes from 1 to 4 and their location changed.

www.manaraa.com

38

5.4.1: First Group: Number of characters in the fuzzy query = 1

We test the response time when the location of the character was in the start of the
word, in the middle of the word and in the last of the word.

First case: when the location of the character is in the start of the word:

TABLE 5.3: QUERY TIME COST VS. NUMBER OF RECORD FOR

THE FIRST CASE.

LOCATION = START

No Of Records 100 500 1000 10000

DEC_ALL* 836 4200 6890 47576

FUZZY_METHOD_START* 21 84 252 4530

FUZZY_METHOD_START 15 76 240 4512

DEC_ALL 821 4189 6882 47565

*Has selected encrypted columns

Figure (5.6) shows the cost of query-execution time of the two kinds of querying
methods when the size of the data increased from 100 to 100000 records. We measured the
time in mille second. The experiments are done for the two cases; with selected encrypted
column and without. We mark the results of the experiments with using a select statement
having selection on an encrypted column by *.

Figure 5.6: Results of executing the same query using the traditional method and
FUZZY_METHOD_START for number of characters =1

www.manaraa.com

39

The results of FUZZY_METHOD show that there is a much improvement in the
response time in compare with the DEC_ALL method. This improvement due to needing
decrypt few records in compare with DEC_ALL which needs to decrypts all the records.
The time needed to build and hide the index and translate the condition to work over the
index is much slower than the time needed to decrypt all the records.

Analysis:

The number of records in the table affects the response time; this is due to the
response time for the operation of translating the condition to work over our index

INDEX_ (FUNCTION) -1 Key LIKE ‘H(G, X58@) %’

Directly proportional with the number of rows in the table.

The another issues is the collision problem, when the number of rows increases the
collision increases that’s because the probability of finding the same characters increases
when the number of rows increase, that’s increase the number of rows need to be decrypted
and filtered out to remove the collision.

Figure 5.7: Results of executing the same query using FUZZY_METHOD_START for
number of characters =1

In figure (5.7), we draw the results of FUZZ_QUERY_START, we found that after
the size of the table exceed 1000 records the response time increases fast, this due to the
problem of collision and increasing the number of rows.

www.manaraa.com

40

Second case: when the location of the character is in the middle of the word:

TABLE 5.4: QUERY TIME COST VS. NUMBER OF RECORD FOR THE SECOND CASE

No Of Records 100 500 1000 10000
DEC_ALL* 836 4200 6890 47576
FUZZY_METHOD-MIDDLE* 56 140 510 7211
FUZZY_METHOD-MIDDLE 50 124 450 6211
DEC_ALL 821 4189 6882 47565
FUZZY_METHOD-START 15 76 240 4512

*Has selected encrypted columns

Figure (5.8) shows the cost of query-execution time of the two kinds of querying
methods when the size of the data increased from 100 to 100000 records.

Figure 5.8. Results of executing the same query using the traditional method and
FUZZY_METHOD_MIDDLE for number of characters =1

www.manaraa.com

41

Analysis:

We found that the response time increases when searching the character in the
middle of the word, that’s because the probability of finding this character in the middle of
the word is higher than the probability of finding the same character in the start of the word
which increases the collision. This issue is also a data related. We work here on the data
generated by a standard benchmark.

Figure 5.9: Comparing between FUZZY_METHOD-START and FUZZY_METHOD-
MIDDLE

www.manaraa.com

42

Third case: when the location of the character is in the end of the word:

Table 5.5: Query time cost vs. Number of record for the third case.

No Of Records 100 500 1000 10000
DEC_ALL* 836 4200 6890 47576
FUZZY_METHOD-MIDDLE* 56 140 510 7211
FUZZY_METHOD-MIDDLE 50 124 450 6211
DEC_ALL 821 4189 6882 47565
FUZZY_METHOD-START 15 76 240 4512
FUZZY_METHOD-END 15 55 212 3800
FUZZY_METHOD-END* 22 66 235 4400
FUZZY_METHOD* 21 84 252 4530

*Has selected encrypted columns

Figure (5.10) shows the cost of query-execution time of the two kinds of querying
methods when the size of the data increased from 100 to 100000 records.

Figure 5.10: Results of executing the same query using the traditional method and
FUZZY_METHOD_END for number of characters =1

www.manaraa.com

43

Analysis:

We found that the response time decreases when searching the character in the end
of the word, that’s because the probability of finding this character in the end of the word is
smaller than the probability of finding the same character in the start or middle of the word
which decreases the collision figure 5.11. This issue is also a data related. We work here on
the data generated by a standard benchmark.

Figure 5.11: Comparing between FUZZY_METHOD_START,
FUZZY_METHOD_MIDDLE and FUZZY_METHOD_END

www.manaraa.com

44

5.4.2: Second Group: Number of characters in the fuzzy query = 2

We test the response time when the location of the character was in the start of the
word, in the middle of the word and in the last of the word.

First case: when the location of the character is in the start of the word:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘jo%’;

Table 5.6: Query time cost vs. Number of record. LOCATION=START; LENGTH=2

Figure 5.12: Results of executing the same query using the traditional method and

FUZZY_METHOD_START for number of characters =2

No Of Records 100 500 1000 10000
FUZZY_METHOD-START 13 66 200 4120
DEC_ALL 821 4189 6882 47565

www.manaraa.com

45

Second case: when the location of the character is in the middle of the word:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%oh%’;

Table 5.7: Query time cost vs. Number of record LOCATION = MIDDLE; LENGHT = 2

Figure 5.13: Results of executing the same query using the traditional method and

FUZZY_METHOD_MIDDLE for number of characters =2

No Of Records 100 500 1000 10000
FUZZY_METHOD-MIDDLE 40 110 390 4982

DEC_ALL 821 4189 6882 47565

www.manaraa.com

46

Third case: when the location of the character is in the end of the word:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%on’;

Table 5.8: Query time cost vs. Number of record LOCATION = END; LENGHT = 2

No Of Records 100 500 1000 10000
FUZZY_METHOD-END 12 56 175 3965

DEC_ALL 821 4189 6882 47565

Figure 5.14: Results of executing the same query using the traditional method and

FUZZY_METHOD_END for number of characters =2

www.manaraa.com

47

Comparison between three methods

Table 5.9: Query time cost vs. Number of record LOCATION = START, MIDDLE,END;
LENGHT = 2

No Of Records 100 500 1000 10000
FUZZY_METHOD-START 13 66 200 4120
FUZZY_METHOD-MIDDLE 40 110 390 4982
FUZZY_METHOD-END 12 56 175 3965

Figure 5.15: Results of executing the same query using the FUZZY_METHOD_START,

FUZZY_METHOD_MIDDLE and FUZZY_METHOD_END for number of characters =2

Analysis:
We found that the response time decreases when searching the character in the end

of the word, that’s because the probability of finding this character in the end of the word is
smaller than the probability of finding the same character in the start or middle of the word
which decreases the collision. This issue is also a data related. We work here on the data
generated by a standard benchmark. This result is like the results of the first group.

We found that when the number of characters increases the execution time of

FUZZY_QUERY is decrease, that’s because the probabilities of finding the same
characters in the same order decreases so the collision decreases.

www.manaraa.com

48

5.4.3: Third Group: Number of characters in the fuzzy query = 3

We test the response time when the location of the character was in the start of the
word, in the middle of the word and in the last of the word.

First case: when the location of the character is in the start of the word:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘joh%’;

Table 5.10: Query time cost vs. Number of record LOCATION = START; LENGHT = 3

No Of Records 100 500 1000 10000
FUZZY_METHOD-START 12 51 165 3502
DEC_ALL 821 4189 6882 47565

Figure 5.16: Results of executing the same query using the traditional method and

FUZZY_METHOD_START for number of characters =3

www.manaraa.com

49

Second case: when the location of the character is in the middle of the word:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%ohn%’;

Table 5.11: Query time cost vs. Number of record LOCATION = MIDDLE; LENGHT = 3

No Of Records 100 500 1000 10000
FUZZY_METHOD-MIDDLE 33 86 301 4210

DEC_ALL 821 4189 6882 47565

Figure 5.17: Results of executing the same query using the traditional method and

FUZZY_METHOD_MIDDLE for number of characters =3

www.manaraa.com

50

Third case: when the location of the character is in the end of the word:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%son’;

Table 5.12: Query time cost vs. Number of record LOCATION = END; LENGHT = 3

No Of Records 100 500 1000 10000
FUZZY_METHOD-END 12 45 134 3215

DEC_ALL 821 4189 6882 47565

Figure 5.18: Results of executing the same query using the traditional method and

FUZZY_METHOD_END for number of characters =3

www.manaraa.com

51

 Comparison between three methods

Table 5.13: Query time cost vs. Number of record LOCATION = START, MIDDLE, END;
LENGHT = 3

No Of Records 100 500 1000 10000

FUZZY_METHOD-START
12 51 165 3502

FUZZY_METHOD-MIDDLE
33 86 301 4210

FUZZY_METHOD-END
12 45 134 3215

Figure 5.19: Results of executing the same query using FUZZY_METHOD_START,

FUZZY_METHOD_MIDDLE AND FUZZY_METHOD_END for number of characters =3

www.manaraa.com

52

5.4.4: Fourth Group: Number of characters in the fuzzy query = 4

We test the response time when the location of the character was in the start of the
word, in the middle of the word and in the last of the word.

First case: when the location of the character is in the start of the word:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘john%’;

Table 5.14: Query time cost vs. Number of record LOCATION = START; LENGHT = 4

No Of Records 100 500 1000 10000

FUZZY_METHOD-START
7 36 70 1540

DEC_ALL 821 4189 6882 47565

Figure 5.20: Results of executing the same query using traditional method and

FUZZY_METHOD_START for number of characters =4

www.manaraa.com

53

Second case: when the location of the character is in the middle of the word:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%ohns%’;

Table 5.15: Query time cost vs. Number of record LOCATION = MIDDLE; LENGHT = 4

No Of Records 100 500 1000 10000
FUZZY_METHOD-MIDDLE 12 46 120 2541

DEC_ALL 821 4189 6882 47565

Figure 5.21: Results of executing the same query using traditional method and

FUZZY_METHOD_MIDDLE for number of characters =4

www.manaraa.com

54

Third case: when the location of the character is in the end of the word:

SELECT * FROM CUSTOMERS

WHERE NAME LIKE ‘%nson’;

Table 5.16: Query time cost vs. Number of record LOCATION = END; LENGHT = 4

No Of Records 100 500 1000 10000
FUZZY_METHOD-END 6 24 36 541

DEC_ALL 821 4189 6882 47565

Figure 5.22: Results of executing the same query using traditional method and

FUZZY_METHOD_END for number of characters =4

www.manaraa.com

55

Comparison between three methods

Table 5.17: Query time cost vs. Number of record LOCATION = START, MIDDLE, END;
LENGHT = 4

No Of Records 100 500 1000 10000
FUZZY_METHOD-START 7 36 70 1540

FUZZY_METHOD-MIDDLE 12 46 120 2541

FUZZY_METHOD-END 6 24 36 541

Figure 5.23: Results of executing the same query using FUZZY_METHOD_START ,

FUZZY_METHOD_MIDDLE and FUZZY_METHOD_END for number of characters =4

www.manaraa.com

56

5.4.5: Comparison between the four groups

We made a comparison between the three cases when the location in the character is

in the start and middle and end for each of the three groups LENGTH = 1, 2, 3, 4

First Case: Start of the word

Table 5.18: Query time cost vs. Number of record LOCATION = START; LENGHT =
1,2,3,4

No Of Records 100 500 1000 10000
FUZZY_METHOD-START = 1 15 76 240 4512
FUZZY_METHOD-START = 2 13 66 200 4120
FUZZY_METHOD-START = 3 12 51 165 3502
FUZZY_METHOD-START = 4 7 36 70 1540

Figure 5.24: Results of executing the same query using FUZZY_METHOD_START for number of

characters =1,2,3,4

www.manaraa.com

57

Second case: Middle of the word

Table 5.19: Query time cost vs. Number of record LOCATION = MIDDLE; LENGHT =
1,2,3,4

No Of Records 100 500 1000 10000
FUZZY_METHOD-MIDDLE = 1 50 124 450 6211
FUZZY_METHOD-MIDDLE = 2 40 110 390 4982

FUZZY_METHOD-MIDDLE = 3 33 86 301 4210

FUZZY_METHOD-MIDDLE = 4 12 46 120 2541

Figure 5.25: Results of executing the same query using FUZZY_METHOD_MIDDLE for number

of characters =1,2,3,4

www.manaraa.com

58

Third Case: End of the word

Table 5.20: Query time cost vs. Number of record LOCATION = END; LENGHT = 1,2,3,4

No Of Records 100 500 1000 10000
FUZZY_METHOD-END = 1 15 55 212 3800
FUZZY_METHOD-END = 2 12 56 175 3965
FUZZY_METHOD-END = 3 12 45 134 3215

FUZZY_METHOD-END = 4 6 24 36 541

Figure 5.26: Results of executing the same query using FUZZY_METHOD_END for number of

characters =1,2,3,4

Analysis:
According to the results we found that when the length of the characters increases

the response time enhanced and decreses that is due to decreasing the collision, that’s
means that the results rows need to be filtered out is decresed.
This can be proved by the following:
If we limit the range of charaters to be from a-z that is 26 characters.
If the characters are distributed randomly and have the same probapility each character
have the probapility of 1/26 = 0.0385, by using our fuzzy method and by limit the group of
numeric index to be from 0 – 9 that is 10 numbers. So the probapilty of having a collision
for each chracter is 10/26 = 0.385

www.manaraa.com

59

The probabilty of having a character x and collision is:

0.0385 * 0.385 = 0.0148225

If the number of concatanated characters to be find is 2 then the probability of having a

collision is :

0.385 * 0.385 = 0.148225 < 0.385

That’s proves when the number of characters increases the probability of collison decreases

and the response time enhanced.

www.manaraa.com

60

Chapter Six

Conclusion and Future Work

6.1 Summary and Concluding Remarks
We proposed three new methods of query over encrypted data in databases, our

methods did not affect the inner structure of the DBMS because it was implemented as a
layer above the DBMS, this layer hided the details of the DBMS so we did not need to have
an open source database. This point makes that our methods can adapt with any kind of the
known DBMS like MS SQL, Oracle and MS Access.. Etc. We implemented our layer by
using the Delphi as a programming language, for each of the proposed ways there were a
common components and for every one there were a specific components. A universal
benchmark TPC-H was used to implement the layout and the tables and its relations and the
data was generated according to this benchmark. For the first method we used one way
functions in our case this were the AES and SHA-1, the query from the client changed in
the layer to be able to work over the encrypted data. The results of this method provided a
huge enhancement in the response time for the query over encrypted data when used this
way. We proved this by tested the results of experiments that were measuring the response
time for the method when the number of records in the database changed. In the second
method we used the data structure HASH MAP, this object was used to enhance the
response time for the first method by storing the mapping of plain text and encrypted text in
the memory. The Hash Map stored the mapping between the plain text and the encrypted
text as KEY: VALUE, in which the KEY is the plain text and the VALUE is the encrypted
value of the plain text. The Hash Map contains two main operations, PutValue and
GetValue. PutValue(Key , Value), GetValue(Key): Value. This method needed a huge
memory, so this method is not adapt with a large database contains tables have many
records; this method can work in distributed systems environment.

The results of our experiments for the two first methods provided that the second
method have a better response time, this was due the second method worked on the
memory and the first method worked on the hard disk which is slower than the memory.

In the third method we worked on the fuzzy queries. We built an index over the
target plain text and mapped the plain text to numeric values to be the index for the plain
text which was encrypted, and then we hided the structure of this index. This process must
have a response time faster than the time needed for the encryption, we did this by using a
simple functions and the experiments shows that there was a noticed enhancement in the
response time in compared with the traditional way when the number of records in the
target table increased. We gave detailded examples on how to build the index and how to
query the data.

www.manaraa.com

61

6.2 Recommendations and Future Work
 In the future we will try to fix the limitations of the first method which are the extra
time and hard disk space needed for insert or update a new record in the database and the
issue that this method works fine with the equal condition in the database and does not
work with the greater or smaller conditions on numeric data and does not work also with
the fuzzy query. The second method also does not work with the greater or smaller
conditions on numeric data and does not work with the fuzzy query, the second method
also needs a huge memory when the number of records in the database is large so this
method is not adapted with the large database size, in future we will try to fix this problem.
In future we will study how to solve the collision problem for third method and study other
cases when the target characters need to be found is not beside each other’s and we will try
to make our method more secure by making the hiding of the index a more complex
operation. We will also try to make our methods work with the join query and study how to
adapt our methods with the more complex queries.

www.manaraa.com

62

References

[1] Erez Shmueli, Ronen Vaisenberg, Yuval Elovici and Chanan Glezer, “Database Encryption – An
Overview of Contemporary Challenges and Design Considerations” SIGMOD Record, September 2009 (Vol.
38, No. 3)
[2] Dawn Xiaodong Song, David Wagner, and Adrian Perring. Practical Techniques for Searches on

Encrypted Data, IEEE Symposium on Security and Privacy, 2000, pp. 44-55.
[3] H. Hacigumus , Bala Iyer and Sharad Mehrotra, "Providing Database as a Service", Data Engineering,

Proceedings. 18th International Conference , 2002
[4] H. Hacigumus, B. Iyer, C. Li and S. Mehrotra, “Executing SQL over encrypted data in the database

service provider model,” In ACM SIGMOD Conference, 2002, pp. 216-227.
[5] H. Hacigumus, B. Iyer, and S. Mehrotra. “Efficient execution of aggregation queries over encrypted

relational databases”. In the proceedings of Database Systems for Advanced Applications (DASFAA),
2004, pp. 125-136

[6] B. Hore, S. Mehrotra and G. Tsudik. “A Privacy-Preserving Index for Range Queries”. In Proceedings of
the 30th VLDB Conference, 2004, pp. 720–731.

[7] Z. Wang, J. Dai, W. Wang and B.L. Shi, “Fast Query over Encrypted Character Data in Database”.
Communications In Information and Systems, 2004, pp.289-300

[8] Zheng-Fei Wang, Wei Wang and Bai-Le Shi , "Storage and Query over Encrypted Character and
Numerical Data in Database", Computer and Information Technology. The Fifth International
Conference, 2005

[9] H. Zhu, J. Cheng and R. Jin, “Execution Query over Encrypted Character Strings in Databases,” Frontier
of Computer Science and Technology, 2007, pp. 90-97

[10] H. APark, D. Lee, J. Zhan and G. Blosser, "Efficient Keyword Index Search over Encrypted Documents
of Groups" ISI 2008, June 17-20

[11] Yu Han, Zhao Liang Niu Xiamu, “Research on a new method for database encryption and cipher index”.
Acta Electronica Sinica, No. 12A 2005

[12] Z. Wang, A. Tang and W. Wang, "Fast Query over Encrypted Data Based on b+ Tree”, International
Conference on Apperceiving Computing and Intelligence Analysis (ICACIA), 23-25 Oct. 2009.

[13] Bertino, E.; Sandhu, R., "Database security – concepts, approaches and challenges", IEEETransactions
on Dependable and Secure Computing, VOL. 2, NO. 1, JANUARY-MARCH 2005

[14] S. Sesay, Z. Yang, J. Chen and D. Xu, “A Secure Database Encryption Scheme”. Consumer
Communications and Networking Conference (CCNC), 2005, pp. 49-53

[15] W. Baohua, M. Xiniang and L. Danning, "A Formal Mutilevel Database Security Model", IEEE
International Conference on Computational Intelligence and Security, 13-17 Dec. 2008

[16] Y. Zhang, W. Li and X. Niu, “A Method of Bucket Index over Encrypted Character Data in Database”.
Intelligent Information Hiding and Multimedia Signal Processing, 2007, pp. 186-189

[17] Michael Mitzenmacher , "Compressed Bloom Filters", IEEE/ACM Transactions on Networking, VOL.
10, NO. 5, October 2002

[18] Jehoshua Bruck , Jie Gao and Anxiao (Andrew) Jiang, "Weighted Bloom Filter" ISIT 2006, Seattle,
USA, July 9 14, 2006

[19] Yong Zhang, Wei-xin Li and Xia-Mu Niu, "A Secure Cipher Index Over Encrypted Character Data in
Database", Proceedings of the Seventh International Conference on Machine Learning and Cybernetics,
Kunming, 12-15 July 2008

[20] Lianzhong Liu and Jingfen Gai, "Bloom Filter Based Index for Query over Encrypted Character Strings
in Database", World Congress on Computer Science and Information Engineering, 2009

[21] Yong Soon KIM and Eui Kyeong Hong, "Considerations of Extending SQL on Encrypted Data in
UniSQL", Advanced Communication Technology, The 9th International Conference on 12-14 Feb. 2007

[22] Premchand B. Ambhore,B.B.Meshram and V.B.Waghmare "A Implementation of Object Oriented
Database Security", Software Engineering Research, Management & Applications. 5th ACIS
International Conference , 2007

www.manaraa.com

63

[23] Yu Chen and Wesley W. Chu, Fellow "Protection of Database Security via Collaborative Inference
Detection", IEEE Transactions on Knowledge and Data Engineering, VOL. 20, NO. 8, August 2008

[24] Sohail IMRAN and Irfan Hyder, "Security Issues in Databases", Second International Conference on
Future Information Technology and Management Engineering, 2009

[25] Xu Ruzhi, Guo jian and Deng Liwu, "A Database Security Gateway to the Detection of SQL Attacks",
3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 2010

[26] Wikipedia, the free encyclopedia. Advanced Encryption Standard [Online]. Available:
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard [10/11/2012]

[27] Wikipedia, the free encyclopedia. Secure Hash Algorithm [Online]. Available:
http://en.wikipedia.org/wiki/SHA-1[12/11/2012]

[28] Wikipedia, the free encyclopedia. Hash Table [Online]. Available:
http://en.wikipedia.org/wiki/Hash_table [14/11/2012]

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard�
http://en.wikipedia.org/wiki/Hash_table�

	Background
	3.2: High-level description of the algorithm

	3.8: Hash Map
	Methodology
	4.2: Architecture of the first Method
	4.3: Architecture of the Second Method
	Analysis:
	The main difference between the first and the second method is that the first method works on the mapping which stored in the database (Hard Disk) but the second method works on the mapping which stored in the memory as a data structure (Hash Map) hav...
	The second method didn’t fit with the databases which have tables with a large number of records because it will take a huge memory and there will be a need for virtual memory which decrease the response time of this method.
	Using of the distributed systems with distributed shared memory can be a part of solution for this problem (working with large databases).
	The secure of the Hash Map depends on the security of its hash function; in our method we used SHA-1 as the hash algorithm for the Hash Map.
	4.4: Architecture of the third Method
	Chapter Five
	Experiments and Analysis of Performance
	Database Entities, Relationships, and Characteristics

